On a new \mathbf{F}_{σ} ideal

Adam Kwela

Institute of Mathematics, Polish Academy of Sciences

January 28, 2014

An ideal \mathcal{I} on ω is *Mon* if every sequence of reals contains a monotone subsequence indexed by an \mathcal{I} -positive set.

An ideal \mathcal{I} is *k*-Ramsey if every coloring of $[\omega]^2$ by *k* colors has a homogeneous \mathcal{I} -positive set.

 $\mathsf{Ramsey} \Rightarrow \mathit{Mon}.$

Filipów, Mrożek, Recław and Szuca asked if there is a *Mon* ideal which is not *k*-Ramsey for some *k*?

This question was answered by Meza-Alcántara, who showed the existance of a 2-Ramsey (so *Mon*) ideal, which is not 3-Ramsey. But we can reformulate this question:

Question

An ideal \mathcal{I} on ω is *Mon* if every sequence of reals contains a monotone subsequence indexed by an \mathcal{I} -positive set. An ideal \mathcal{I} is *k*-Ramsey if every coloring of $[\omega]^2$ by *k* colors has a homogeneous \mathcal{I} -positive set.

 $\mathsf{Ramsey} \Rightarrow \mathit{Mon}.$

Filipów, Mrożek, Recław and Szuca asked if there is a *Mon* ideal which is not *k*-Ramsey for some *k*?

This question was answered by Meza-Alcántara, who showed the existance of a 2-Ramsey (so *Mon*) ideal, which is not 3-Ramsey. But we can reformulate this question:

Question

An ideal \mathcal{I} on ω is *Mon* if every sequence of reals contains a monotone subsequence indexed by an \mathcal{I} -positive set. An ideal \mathcal{I} is *k*-Ramsey if every coloring of $[\omega]^2$ by *k* colors has a homogeneous \mathcal{I} -positive set.

$\mathsf{Ramsey} \Rightarrow \mathit{Mon}.$

Filipów, Mrożek, Recław and Szuca asked if there is a *Mon* ideal which is not *k*-Ramsey for some *k*?

This question was answered by Meza-Alcántara, who showed the existance of a 2-Ramsey (so *Mon*) ideal, which is not 3-Ramsey. But we can reformulate this question:

Question

An ideal \mathcal{I} on ω is *Mon* if every sequence of reals contains a monotone subsequence indexed by an \mathcal{I} -positive set. An ideal \mathcal{I} is *k*-Ramsey if every coloring of $[\omega]^2$ by *k* colors has a homogeneous \mathcal{I} -positive set.

 $\mathsf{Ramsey} \Rightarrow \mathit{Mon}.$

Filipów, Mrożek, Recław and Szuca asked if there is a *Mon* ideal which is not *k*-Ramsey for some *k*?

This question was answered by Meza-Alcántara, who showed the existance of a 2-Ramsey (so *Mon*) ideal, which is not 3-Ramsey. But we can reformulate this question:

Question

An ideal \mathcal{I} on ω is *Mon* if every sequence of reals contains a monotone subsequence indexed by an \mathcal{I} -positive set. An ideal \mathcal{I} is *k*-Ramsey if every coloring of $[\omega]^2$ by *k* colors has a homogeneous \mathcal{I} -positive set.

 $\mathsf{Ramsey} \Rightarrow \mathit{Mon}.$

Filipów, Mrożek, Recław and Szuca asked if there is a *Mon* ideal which is not *k*-Ramsey for some *k*?

This question was answered by Meza-Alcántara, who showed the existance of a 2-Ramsey (so *Mon*) ideal, which is not 3-Ramsey. But we can reformulate this question:

Question

An ideal \mathcal{I} on ω is *Mon* if every sequence of reals contains a monotone subsequence indexed by an \mathcal{I} -positive set. An ideal \mathcal{I} is *k*-Ramsey if every coloring of $[\omega]^2$ by *k* colors has a homogeneous \mathcal{I} -positive set.

 $\mathsf{Ramsey} \Rightarrow \mathit{Mon}.$

Filipów, Mrożek, Recław and Szuca asked if there is a *Mon* ideal which is not *k*-Ramsey for some *k*?

This question was answered by Meza-Alcántara, who showed the existance of a 2-Ramsey (so *Mon*) ideal, which is not 3-Ramsey. But we can reformulate this question:

Question

The ideal \mathcal{K}

Define a coloring $\chi: [\omega \times \omega]^2 \to \{\text{blue}, \text{red}\}$ by:

$$\chi((i,j),(k,l)) = \begin{cases} \text{blue} & \text{if } k > i+j \\ \text{red} & \text{if } k \le i+j \end{cases}$$

for $(i, j), (k, l) \in \omega \times \omega$ such that $(i, j) \leq_{\mathsf{lex}} (k, l)$.

Definition (K.)

 \mathcal{K} is the ideal generated by χ -homogeneous subsets of $\omega \times \omega$, i.e., sets $H \subset \omega \times \omega$ such that $\chi \upharpoonright [H]^2$ is constant.

It is immediate that \mathcal{K} is not 2-Ramsey. Moreover one can prove that \mathcal{K} is \mathbf{F}_{σ} .

The ideal \mathcal{K}

Define a coloring $\chi: [\omega \times \omega]^2 \to \{\text{blue}, \text{red}\}\ \text{by:}$

$$\chi((i,j),(k,l)) = \begin{cases} \text{blue} & \text{if } k > i+j \\ \text{red} & \text{if } k \le i+j \end{cases}$$

for $(i,j), (k,l) \in \omega \times \omega$ such that $(i,j) \leq_{\mathsf{lex}} (k,l)$.

Definition (K.)

 \mathcal{K} is the ideal generated by χ -homogeneous subsets of $\omega \times \omega$, i.e., sets $H \subset \omega \times \omega$ such that $\chi \upharpoonright [H]^2$ is constant.

It is immediate that \mathcal{K} is not 2-Ramsey. Moreover one can prove that \mathcal{K} is \mathbf{F}_{σ} .

The ideal \mathcal{K}

Define a coloring $\chi: [\omega \times \omega]^2 \to \{\text{blue}, \text{red}\}\ \text{by:}$

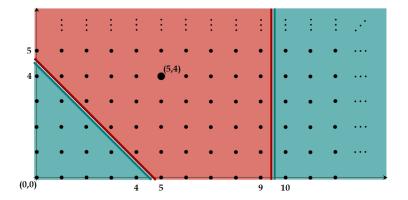
$$\chi((i,j),(k,l)) = \begin{cases} \text{blue} & \text{if } k > i+j \\ \text{red} & \text{if } k \le i+j \end{cases}$$

for $(i,j), (k,l) \in \omega \times \omega$ such that $(i,j) \leq_{\mathsf{lex}} (k,l)$.

Definition (K.)

 \mathcal{K} is the ideal generated by χ -homogeneous subsets of $\omega \times \omega$, i.e., sets $H \subset \omega \times \omega$ such that $\chi \upharpoonright [H]^2$ is constant.

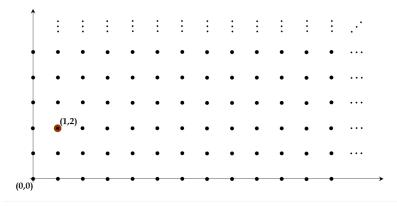
It is immediate that ${\cal K}$ is not 2-Ramsey. Moreover one can prove that ${\cal K}$ is ${\bf F}_{\sigma}.$



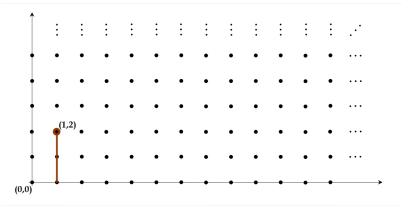
- all vertical lines, i.e. all sets $\{i\} \times \omega$ for $i \in \omega$;
- subsets of $\omega \times \omega$ of the following form:



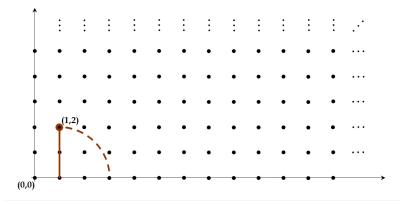
- all vertical lines, i.e. all sets $\{i\} \times \omega$ for $i \in \omega$;
- subsets of $\omega \times \omega$ of the following form:



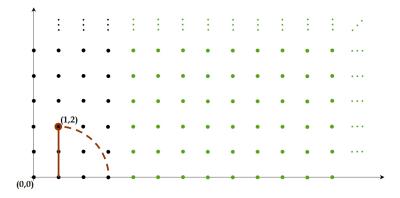
- all vertical lines, i.e. all sets $\{i\} \times \omega$ for $i \in \omega$;
- subsets of $\omega \times \omega$ of the following form:



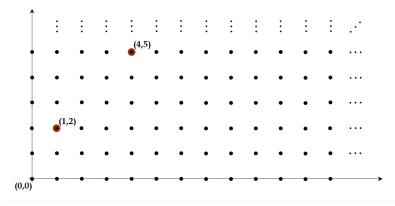
- all vertical lines, i.e. all sets $\{i\} \times \omega$ for $i \in \omega$;
- subsets of $\omega \times \omega$ of the following form:



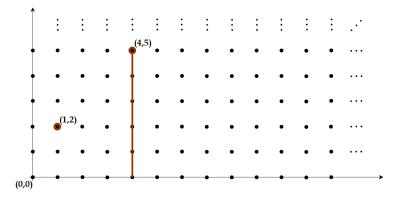
- all vertical lines, i.e. all sets $\{i\} \times \omega$ for $i \in \omega$;
- subsets of $\omega \times \omega$ of the following form:



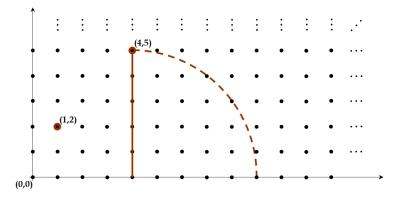
- all vertical lines, i.e. all sets $\{i\} \times \omega$ for $i \in \omega$;
- subsets of $\omega \times \omega$ of the following form:



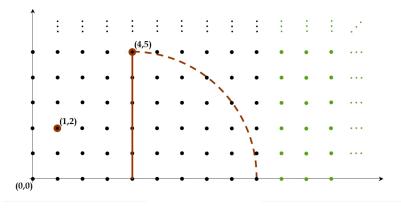
- all vertical lines, i.e. all sets $\{i\} \times \omega$ for $i \in \omega$;
- $\bullet\,$ subsets of $\omega\times\omega$ of the following form:



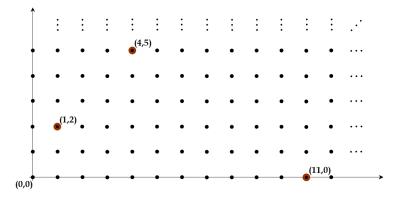
- all vertical lines, i.e. all sets $\{i\} \times \omega$ for $i \in \omega$;
- subsets of $\omega \times \omega$ of the following form:



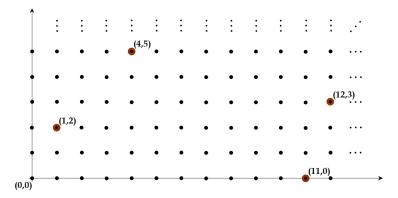
- all vertical lines, i.e. all sets $\{i\} \times \omega$ for $i \in \omega$;
- subsets of $\omega \times \omega$ of the following form:



- all vertical lines, i.e. all sets $\{i\} \times \omega$ for $i \in \omega$;
- subsets of $\omega \times \omega$ of the following form:



- all vertical lines, i.e. all sets $\{i\} \times \omega$ for $i \in \omega$;
- subsets of $\omega \times \omega$ of the following form:



Answer to the question of Filipów et al.

An ideal \mathcal{I} on ω is *Mon* if every sequence of reals contains a monotone subsequence indexed by an \mathcal{I} -positive set.

Question

Is there a Mon ideal which is not 2-Ramsey?

Theorem (K.)

Every ideal on ω isomorphic to \mathcal{K} is Mon.

Corollary

K solves the Problem of Filipów, Mrożek, Recław and Szuca!

Answer to the question of Filipów et al.

An ideal \mathcal{I} on ω is *Mon* if every sequence of reals contains a monotone subsequence indexed by an \mathcal{I} -positive set.

Question

Is there a Mon ideal which is not 2-Ramsey?

Theorem (K.)

Every ideal on ω isomorphic to \mathcal{K} is Mon.

Corollary

K solves the Problem of Filipów, Mrożek, Recław and Szuca!

Answer to the question of Filipów et al.

An ideal \mathcal{I} on ω is *Mon* if every sequence of reals contains a monotone subsequence indexed by an \mathcal{I} -positive set.

Question

Is there a Mon ideal which is not 2-Ramsey?

Theorem (K.)

Every ideal on ω isomorphic to \mathcal{K} is Mon.

Corollary

 ${\cal K}$ solves the Problem of Filipów, Mrożek, Recław and Szuca!

- A sequence $(x_i)_{i \in \omega}$ of reals is \mathcal{I} -convergent to $x \in \mathbb{R}$ if $\{i \in \omega : |x_i x| \ge \epsilon\} \in \mathcal{I}$ for every $\epsilon > 0$.
- A function f: ℝ → ℝ is a pointwise limit relatively to I of a sequence of functions (f_i)_{i∈ω} if (f_i(x))_{i∈ω} is I-convergent to f(x) for every x ∈ ℝ.
- For a family *F* ⊂ ℝ^ℝ by *LIM*(*F*) we denote the family of all functions which can be represented as a pointwise limit of a sequence of functions from *F* (for instance, if *C* denotes the family of continuous functions then *LIM*(*C*) is the first Baire class).
- For a family *F* ⊂ ℝ^ℝ by *I*-*LIM*(*F*) we denote the family of all functions which can be represented as a pointwise limit relatively to *I* of a sequence of functions from *F*.

- A sequence $(x_i)_{i \in \omega}$ of reals is \mathcal{I} -convergent to $x \in \mathbb{R}$ if $\{i \in \omega : |x_i x| \ge \epsilon\} \in \mathcal{I}$ for every $\epsilon > 0$.
- A function f: ℝ → ℝ is a pointwise limit relatively to I of a sequence of functions (f_i)_{i∈ω} if (f_i(x))_{i∈ω} is I-convergent to f(x) for every x ∈ ℝ.
- For a family *F* ⊂ ℝ^ℝ by *LIM*(*F*) we denote the family of all functions which can be represented as a pointwise limit of a sequence of functions from *F* (for instance, if *C* denotes the family of continuous functions then *LIM*(*C*) is the first Baire class).
- For a family *F* ⊂ ℝ^ℝ by *I*-*LIM*(*F*) we denote the family of all functions which can be represented as a pointwise limit relatively to *I* of a sequence of functions from *F*.

・ 回 ト ・ ヨ ト ・ ヨ ト

- A sequence $(x_i)_{i \in \omega}$ of reals is \mathcal{I} -convergent to $x \in \mathbb{R}$ if $\{i \in \omega : |x_i x| \ge \epsilon\} \in \mathcal{I}$ for every $\epsilon > 0$.
- A function f: ℝ → ℝ is a pointwise limit relatively to I of a sequence of functions (f_i)_{i∈ω} if (f_i(x))_{i∈ω} is I-convergent to f(x) for every x ∈ ℝ.
- For a family *F* ⊂ ℝ^ℝ by *LIM*(*F*) we denote the family of all functions which can be represented as a pointwise limit of a sequence of functions from *F* (for instance, if *C* denotes the family of continuous functions then *LIM*(*C*) is the first Baire class).
- For a family *F* ⊂ ℝ^ℝ by *I*-*LIM*(*F*) we denote the family of all functions which can be represented as a pointwise limit relatively to *I* of a sequence of functions from *F*.

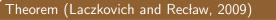
・ 御 ト ・ 注 ト ・ 注 ト

- A sequence $(x_i)_{i \in \omega}$ of reals is \mathcal{I} -convergent to $x \in \mathbb{R}$ if $\{i \in \omega : |x_i x| \ge \epsilon\} \in \mathcal{I}$ for every $\epsilon > 0$.
- A function f: ℝ → ℝ is a pointwise limit relatively to I of a sequence of functions (f_i)_{i∈ω} if (f_i(x))_{i∈ω} is I-convergent to f(x) for every x ∈ ℝ.
- For a family *F* ⊂ ℝ^ℝ by *LIM*(*F*) we denote the family of all functions which can be represented as a pointwise limit of a sequence of functions from *F* (for instance, if *C* denotes the family of continuous functions then *LIM*(*C*) is the first Baire class).
- For a family *F* ⊂ ℝ^ℝ by *I*-*LIM*(*F*) we denote the family of all functions which can be represented as a pointwise limit relatively to *I* of a sequence of functions from *F*.

・ 回 と ・ ヨ と ・ ・ ヨ と

- A sequence $(x_i)_{i \in \omega}$ of reals is \mathcal{I} -convergent to $x \in \mathbb{R}$ if $\{i \in \omega : |x_i x| \ge \epsilon\} \in \mathcal{I}$ for every $\epsilon > 0$.
- A function f: ℝ → ℝ is a pointwise limit relatively to I of a sequence of functions (f_i)_{i∈ω} if (f_i(x))_{i∈ω} is I-convergent to f(x) for every x ∈ ℝ.
- For a family *F* ⊂ ℝ^ℝ by *LIM*(*F*) we denote the family of all functions which can be represented as a pointwise limit of a sequence of functions from *F* (for instance, if *C* denotes the family of continuous functions then *LIM*(*C*) is the first Baire class).
- For a family *F* ⊂ ℝ^ℝ by *I*-*LIM*(*F*) we denote the family of all functions which can be represented as a pointwise limit relatively to *I* of a sequence of functions from *F*.

▲圖 ▶ ▲ 注 ▶ ▲ 注 ▶ →



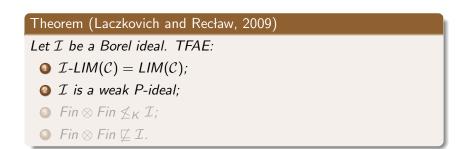
Let \mathcal{I} be a Borel ideal. TFAE:

- \bigcirc *I* is a weak P-ideal;
- **○** Fin \otimes Fin $\leq_K \mathcal{I}$;

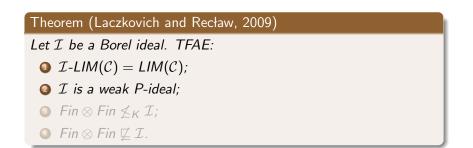
• Fin \otimes Fin $\not\sqsubseteq \mathcal{I}$.

 \mathcal{I} is a weak P-ideal if for every $(X_i)_{i\in\omega} \subset \mathcal{I}$ there is $X \notin \mathcal{I}$ with $X \cap X_i$ finite for all *i*. $\mathcal{I} \leq_K \mathcal{J}$ if there is $f: \bigcup \mathcal{J} \to \bigcup \mathcal{I}$ such that $f^{-1}[A] \in \mathcal{J}$ for all $A \in \mathcal{I}$. $\mathcal{I} \sqsubseteq \mathcal{J}$ if *f* is a bijection.

 \mathcal{I} is a weak P-ideal if for every $(X_i)_{i\in\omega} \subset \mathcal{I}$ there is $X \notin \mathcal{I}$ with $X \cap X_i$ finite for all i. $\mathcal{I} \leq_K \mathcal{J}$ if there is $f: \bigcup \mathcal{J} \to \bigcup \mathcal{I}$ such that $f^{-1}[A] \in \mathcal{J}$ for all $A \in \mathcal{I}$. $\mathcal{I} \sqsubseteq \mathcal{J}$ if f is a bijection.



 \mathcal{I} is a weak P-ideal if for every $(X_i)_{i \in \omega} \subset \mathcal{I}$ there is $X \notin \mathcal{I}$ with $X \cap X_i$ finite for all *i*. $\mathcal{I} \leq_K \mathcal{J}$ if there is $f: \bigcup \mathcal{J} \to \bigcup \mathcal{I}$ such that $f^{-1}[A] \in \mathcal{J}$ for all $A \in \mathcal{I}$. $\mathcal{I} \sqsubseteq \mathcal{J}$ if *f* is a bijection.



 \mathcal{I} is a weak P-ideal if for every $(X_i)_{i\in\omega} \subset \mathcal{I}$ there is $X \notin \mathcal{I}$ with $X \cap X_i$ finite for all *i*. $\mathcal{I} \leq_K \mathcal{J}$ if there is $f: \bigcup \mathcal{J} \to \bigcup \mathcal{I}$ such that $f^{-1}[A] \in \mathcal{J}$ for all $A \in \mathcal{I}$. $\mathcal{I} \sqsubseteq \mathcal{J}$ if *f* is a bijection.

 \mathcal{I} is a weak P-ideal if for every $(X_i)_{i \in \omega} \subset \mathcal{I}$ there is $X \notin \mathcal{I}$ with $X \cap X_i$ finite for all *i*. $\mathcal{I} \leq_K \mathcal{J}$ if there is $f : \bigcup \mathcal{J} \to \bigcup \mathcal{I}$ such that $f^{-1}[A] \in \mathcal{J}$ for all $A \in \mathcal{I}$. $\mathcal{I} \sqsubseteq \mathcal{J}$ if *f* is a bijection.

 \mathcal{I} is a weak P-ideal if for every $(X_i)_{i \in \omega} \subset \mathcal{I}$ there is $X \notin \mathcal{I}$ with $X \cap X_i$ finite for all *i*. $\mathcal{I} \leq_{\mathcal{K}} \mathcal{J}$ if there is $f : \bigcup \mathcal{J} \to \bigcup \mathcal{I}$ such that $f^{-1}[A] \in \mathcal{J}$ for all $A \in \mathcal{I}$. $\mathcal{I} \sqsubseteq \mathcal{J}$ if *f* is a bijection. $f: \mathbb{R} \to \mathbb{R}$ is quasi-continuous $(f \in QC)$ if for every $\epsilon > 0$, $x_0 \in \mathbb{R}$ and open neighborhood $U \ni x_0$ there is a nonempty open $V \subset U$ such that $|f(x) - f(x_0)| < \epsilon$ for all $x \in V$.

Quasi-continuous are all continuous functions as well as all left-continuous (right-continuous) functions.

In 1988 Grande characterized the family LIM(QC).

 $f: \mathbb{R} \to \mathbb{R}$ is quasi-continuous $(f \in QC)$ if for every $\epsilon > 0$, $x_0 \in \mathbb{R}$ and open neighborhood $U \ni x_0$ there is a nonempty open $V \subset U$ such that $|f(x) - f(x_0)| < \epsilon$ for all $x \in V$.

Quasi-continuous are all continuous functions as well as all left-continuous (right-continuous) functions.

In 1988 Grande characterized the family LIM(QC).

 $f: \mathbb{R} \to \mathbb{R}$ is quasi-continuous $(f \in QC)$ if for every $\epsilon > 0$, $x_0 \in \mathbb{R}$ and open neighborhood $U \ni x_0$ there is a nonempty open $V \subset U$ such that $|f(x) - f(x_0)| < \epsilon$ for all $x \in V$.

Quasi-continuous are all continuous functions as well as all left-continuous (right-continuous) functions.

In 1988 Grande characterized the family LIM(QC).

Let \mathcal{I} be a Borel ideal. TFAE:

 $I-LIM(\mathcal{QC}) = LIM(\mathcal{QC});$

I is weakly Ramsey;

Following Laflamme we call \mathcal{I} weakly Ramsey if every tree $T \subset [\omega]^{<\omega}$ with $\{n : s \cap n \in T\}$ in the dual filter for all $s \in T$, contains an \mathcal{I} -positive branch.

Question

Let \mathcal{I} be a Borel ideal. TFAE:

• \mathcal{I} -LIM(\mathcal{QC}) = LIM(\mathcal{QC});

I is weakly Ramsey;

Following Laflamme we call \mathcal{I} weakly Ramsey if every tree $T \subset [\omega]^{<\omega}$ with $\{n : s \cap n \in T\}$ in the dual filter for all $s \in T$, contains an \mathcal{I} -positive branch.

Question

Let \mathcal{I} be a Borel ideal. TFAE:

 $I-LIM(\mathcal{QC}) = LIM(\mathcal{QC});$

Q \mathcal{I} is weakly Ramsey;

Following Laflamme we call \mathcal{I} weakly Ramsey if every tree $T \subset [\omega]^{<\omega}$ with $\{n : s \cap n \in T\}$ in the dual filter for all $s \in T$, contains an \mathcal{I} -positive branch.

Question

Let \mathcal{I} be a Borel ideal. TFAE:

- $I-LIM(\mathcal{QC}) = LIM(\mathcal{QC});$
- **2** *I* is weakly Ramsey;

Following Laflamme we call \mathcal{I} weakly Ramsey if every tree $T \subset [\omega]^{<\omega}$ with $\{n : s \cap n \in T\}$ in the dual filter for all $s \in T$, contains an \mathcal{I} -positive branch.

Question

Let \mathcal{I} be a Borel ideal. TFAE:

 $I-LIM(\mathcal{QC}) = LIM(\mathcal{QC});$

2 *I* is weakly Ramsey;

Following Laflamme we call \mathcal{I} weakly Ramsey if every tree $T \subset [\omega]^{<\omega}$ with $\{n : s \cap n \in T\}$ in the dual filter for all $s \in T$, contains an \mathcal{I} -positive branch.

Question

Theorem (K.)

Let \mathcal{I} be any ideal. TFAE:

- I is not weakly Ramsey;

Corollary

Let I be a Borel ideal. TFAE:

- I is weakly Ramsey;
- $\ \, \bullet \ \, \mathcal{K} \not\sqsubseteq \mathcal{I}.$

Theorem (K.)

Let \mathcal{I} be any ideal. TFAE:

- I is not weakly Ramsey;
- $\ \, \mathcal{K} \sqsubseteq \mathcal{I};$

Corollary

Let I be a Borel ideal. TFAE:

- I is weakly Ramsey;
- $\ \, \bullet \ \, \mathcal{K} \not\sqsubseteq \mathcal{I}.$

Theorem (K.)

Let \mathcal{I} be any ideal. TFAE:

- I is not weakly Ramsey;
- $\ \, {\cal K} \sqsubseteq {\cal I};$

Corollary

Let I be a Borel ideal. TFAE:

- I is weakly Ramsey;
- $\ \, \bullet \ \, \mathcal{K} \not\sqsubseteq \mathcal{I}.$

Theorem (K.)

Let \mathcal{I} be any ideal. TFAE:

- I is not weakly Ramsey;
- $\ \, {\cal K} \sqsubseteq {\cal I};$

Corollary

Let \mathcal{I} be a Borel ideal. TFAE:

- $I-LIM(\mathcal{QC}) = LIM(\mathcal{QC});$
- I is weakly Ramsey;
- $() \mathcal{K} \not\sqsubseteq \mathcal{I}.$

Theorem (K.)

Let \mathcal{I} be any ideal. TFAE:

- I is not weakly Ramsey;
- $\ \, {\cal K} \sqsubseteq {\cal I};$

Corollary

Let \mathcal{I} be a Borel ideal. TFAE:

- I-LIM(QC) = LIM(QC);
- I is weakly Ramsey;
- $\bigcirc \mathcal{K} \not\sqsubseteq \mathcal{I}.$

 \mathcal{I} is weakly selective, if every partition $(X_n)_{n \in \omega}$ with at most one element not in \mathcal{I} and such that $\bigcup_{m \ge n} X_m \notin \mathcal{I}$ for each *n*, has an \mathcal{I} -positive selector.

weakly selective \Rightarrow locally selective

Proposition (Essentially Grigorieff, 1971)

 \mathcal{I} is weakly Ramsey if and only if for every partition $(X_n)_{n \in \omega} \subset \mathcal{I}$, there exists a strictly increasing function $f : \omega \to \omega$, with $f[\omega] \notin \mathcal{I}$ and such that $f(n+1) \in \bigcup_{i>f(n)} X_i$ for each $n \in \omega$.

 \mathcal{I} is weakly selective, if every partition $(X_n)_{n \in \omega}$ with at most one element not in \mathcal{I} and such that $\bigcup_{m \ge n} X_m \notin \mathcal{I}$ for each *n*, has an \mathcal{I} -positive selector.

weakly selective \Rightarrow locally selective

Proposition (Essentially Grigorieff, 1971)

 \mathcal{I} is weakly Ramsey if and only if for every partition $(X_n)_{n \in \omega} \subset \mathcal{I}$, there exists a strictly increasing function $f : \omega \to \omega$, with $f[\omega] \notin \mathcal{I}$ and such that $f(n+1) \in \bigcup_{i > f(n)} X_i$ for each $n \in \omega$.

(本部) (本語) (本語)

 \mathcal{I} is weakly selective, if every partition $(X_n)_{n \in \omega}$ with at most one element not in \mathcal{I} and such that $\bigcup_{m \ge n} X_m \notin \mathcal{I}$ for each *n*, has an \mathcal{I} -positive selector.

weakly selective \Rightarrow locally selective

Proposition (Essentially Grigorieff, 1971)

 \mathcal{I} is weakly Ramsey if and only if for every partition $(X_n)_{n \in \omega} \subset \mathcal{I}$, there exists a strictly increasing function $f : \omega \to \omega$, with $f[\omega] \notin \mathcal{I}$ and such that $f(n+1) \in \bigcup_{i > f(n)} X_i$ for each $n \in \omega$.

 \mathcal{I} is weakly selective, if every partition $(X_n)_{n \in \omega}$ with at most one element not in \mathcal{I} and such that $\bigcup_{m \ge n} X_m \notin \mathcal{I}$ for each *n*, has an \mathcal{I} -positive selector.

weakly selective \Rightarrow locally selective

Proposition (Essentially Grigorieff, 1971)

 \mathcal{I} is weakly Ramsey if and only if for every partition $(X_n)_{n \in \omega} \subset \mathcal{I}$, there exists a strictly increasing function $f : \omega \to \omega$, with $f[\omega] \notin \mathcal{I}$ and such that $f(n+1) \in \bigcup_{i>f(n)} X_i$ for each $n \in \omega$.

weakly selective \Rightarrow weakly Ramsey \Rightarrow locally selective

Proposition (K.)

The implications cannot be reversed!

For instance the ideal $(\emptyset \otimes Fin) \oplus (Fin \otimes Fin)$ is weakly Ramsey, but not weakly selective. On the other hand \mathcal{K} is locally selective but not weakly Ramsey.

weakly selective \Rightarrow weakly Ramsey \Rightarrow locally selective

Proposition (K.)

The implications cannot be reversed!

For instance the ideal ($\emptyset \otimes Fin$) \oplus ($Fin \otimes Fin$) is weakly Ramsey, but not weakly selective. On the other hand \mathcal{K} is locally selective but not weakly Ramsey.

weakly selective \Rightarrow weakly Ramsey \Rightarrow locally selective

Proposition (K.)

The implications cannot be reversed!

For instance the ideal ($\emptyset \otimes Fin$) \oplus ($Fin \otimes Fin$) is weakly Ramsey, but not weakly selective. On the other hand \mathcal{K} is locally selective but not weakly Ramsey.

Thank you for your attention!

